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Summary .

This article studies nested block designs. with unequal block sizes.
The numbers of subblocks and the subblock sizes within each block are
unequal. The recovery of treatment information from the subblocks
within the blocks, or from the blocks themselves is not considered in
this article. The optimality of nested block designs with unequal block
sizes is also studied. It is seen that a nested, binary subblocks balanced -

* design is universally optimal over a class of designs with fixed numbers
of treatments, blocks and subblocks within a block. ' ’
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Introduction

The use of incomplete block designs is widely recognized in many
fields of experimentation. With some types of cxperlmenta'l material,
however, there may be more sources of variation than can be
eliminated by ordinary block designs. For such situations, Preece
[13] introduced nested balanced incomplete block designs, where
suib-blocks are nested within each block of a balanced incomplete
block design, the sub-blocks constituting another balanced
incomplete block design. Homel and Robinson [7] extended the
results of Preece to nested partially balanced incomplete block
designs. Singh and Dey [15] defined and discussed balanced
incomplete block designs with nested rows and columns for
eliminating heterogeneity in two directions within each block. Preece
and Cameron [14], Singh and Dey [15], Agrawal and Prasad [1](2],
Cheng [4], Dey, et al [5] and Sreenath [16] gave some methods of
construction of balanced incomplete block designs with nested rows
and columns. -

The results obtained by earlier workers are restricted to a
situation when the block design is proper and the common value of
the block sizes is a composite number. In animal experiments where
litters form natural blocks, the assumption of a common block size
is unrealistic. Moreover, the common value of the block size may be

" a prime number. The purpose of this article is to study nested block
designs with unequal block sizes. The present study is, however,
restricted to a situation when there is only one more .additional
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source of variability within blocks. In other words, we are
considering a setting where within the blocks of a block design is
nested another incomplete block design. The universal optimality of
block designs with nested blocks is also investigated. Some
universally optimal designs are reported. For nested block designs
with different block sizes and different sub-block sizes, however,
there is no valid randomisation procedure and Nelder’s [11]{12]
randomisation theory does not apply. :

2. Analysis of the Designs

Suppose that v treatments are arranged in a nested block design
involving b blocks, there being q, mutually exclusive and exhaustive
sub-blocks within the j block, j=1, . . ., b, so-that b = q, is'the
overall total number of sub-blocks. Let N=(n,) be the wvxb
treatments-blocks incidence matrix, where n, deno{es the number
of replications of the i treatment in the jth block, i=1, . . ., v. The
row sums of N are denoted by r = (rys . ..., '1,) and the column sum
byk=(k,,..., k‘gl' where r, and k, denote respectively the replication
number. of the i~ treatment and the size of the j* block. Also T +.
.. +1r,=k +...+k=n, the total number of experimental units.

‘LetM = (m,, . ) denote the vxb, treatments sub-blocks matrix, where

my, o denotes the replication number of the i treatment in the
B sub-block nested within the i block, ' = 1, .-. ., g, The row-

sums of M are the elements of r while its column sums are the

elements of the bxl vector h = (b, .. hy, ). where
b= (.. o hq](l))' I'hy =k and 1, is a tx1 vector of ones. Here
h,,, denotes the size of the j'th sub-block nested in the jth block. Let
R, H and H denote respectively the diagonal matrices whose
diagonal elements are the successive elements of r, hJ and h. Let W
be the bxb, blocks-sub-blocks incidence matrix.

For analysis, consider the model

Yygu = B+ T+ By + Nygy + ey | -2
where ., is the u™ observation obtained from the i* treatment in
the ™ sub-block of the j block, u =-1, . . ., my).. 1 is the general
mean, 7, is the i treatment effect, By is the j* block effect, Nyg is the

effect of the j*" sub-block nested within the j* block, and. the
quantities ey, are uncorrelated errors with mean zero and common

variance o®. In this article we do not consider recovery of treéltment
information from the sub-blocks within the blocks, or from the
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blocks themselves. The observations are assumed to be arranged in
the order of (j, j). Then w = T'h’, where X' denotes the direct sum.

Defining a b;xb matrix L = Z*lqj, the following relations are true:
N=ML, K=L'HL, W=LH, n=1} Hly , k=L Hly,

Using least squares, the co-efficient matrix of the reduced normal
equations for obtaining best linear unbiased estimates of treatment
contrasts is

F=R-MH! M (2.2)

The matrix F is the same as the usual C matrix that is obtained
if blocks are ignored and the design is analysed treating sub-blocks
as blocks. Therefore, in so far as estimation of treatment effects is
considered, it is only the sub-blocks structuse that matters.

The vxv matrix F is symmetric, non-negative definite with zero
row sums. For a connected nested block design the rank of Fis'v-1.
A connected nested block design is variance balanced if and only if

er[lv_&] 2.3)
. v

where 6, a scalar constant, is the unique positive eigenvalue of F
with multiplicity v-1 and I, is an identity matrix of order v.

Example 2.1 : The following is a nested variance balanced design
with parameters v =6, b =9, b, = 18, k = (613, 515), h = (314, 2,
3.2,3,23,2,3,2, 8,2).

{(1.2,3), (2.4,6)), {(1,4.5), (3,5,6)}, {(1,4.5), (3,5.6)},

{(1,2,3), (1,6)}, {(1,4,5), (2.5)}, {(2.4.6), (3.4)),
{(1,2,3), (2,5)}, {(2,4.6), (1,6)}, {(8,5,6), (3,4)}.

3. Optimality Tool

Suppose D is a class of competing designs under the specified
design parameters. Let ®, a functional of F 4 for d ¢ D, denote an

optimality criterion. A design d” e D is said to be ®-optimal over D
if ®Fy) <@ (Fy) for all d e D. Kiefer [10] proposed a strong
optimality criterion, termed universal optimality, which includes
many optimality criteria including D-, E- and A- optimality and
many others. Kiefer's definition of universal optimality and the
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* sufficient condition for achieving universal optimallty are stated
below.

Deﬁnition 3.1 : Let ﬂ,_o be the class of all the vxv symmetric |
nonnegative-definite matrices with zero row sums. Suppose a
function ® from 3, , to (-, 4] is such that

(a) @ is matrix convex.
(b) ForanyF e B, ®(aF)is nonincreasing in the scalar a 2 0.

(c) ®isinvariant under each simultaneous permutation of rows
and columns of F in 3, , ’

Adesignd" e D is said to be universally optimal over D if d is
d-optimal over D for all ® satisfying (a). (b) and (c}.

Theorem 3.1 (Kiefer, 1975) : Suppose a class ¥ = {F; : d e D} of
matrices in B, , contains an Fg* for which

i) Fg is completely symmetric, iLe., Fd"“ is of the form
al,+b1l 1/, where a and b are scalars.

(i) trace (Fy*) = max trace (Fy).
: deD

Thend is universally optimal over D. Definition 3.1 and Theorem
3.1 hold for all experimental settings where vxvinformation matrices
are symmetric, nonnegative-definite with zero row sums and rank
v-1. For example, this result is applicable to all block designs, nested
block designs, designs for two-way elimination of heterogeneity
multi-way heterogeneity designs, etc.

4. The Main Result

We now prove the universal optimality of nested block desighs
under the model (2.1). Before giving the main result we have the
following definition;

Definition 4.1 : A block design with nested blocks is binary if -
my;, = O or 1 for alli, j and j. It is not, however, required that ny
‘should also take only the two values O or 1.

Let D(v; q;. . . ., q,: n) denote the class of all connected nested
block de51gns with b blocks of sub-blocks a,» - - -» G, v treatments
and total number of observations n. The replication numbers of
treatments, the block sizes and the sub-block sizes are fixed for
designs belonging to this class. Throughout the suffix d will denote
a design in D.
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Definition 4.2 : A design deD (v; qy, . . ., Gy : 1) IS called a nested
binary sub-blocks balanced design if ‘
(0 Mgipg) —~ < lforalli=l,:..,v,j’=L, ..., q
j=1...,b.

9,

ot

b
2 Mgy Mdyyg)
Ve =1 §{=1. -
(ii) J .J'

= A, a constant for all i+ i

hqyg)

Condition (i above implies that the frequency of treatments
appearing in any subblock should differ by at most one. This
condition enables us to prove the universal optimality of the nested
binary subblocks balanced designs. Condition (ij) ensures that all
the off-diagonal elements of the F-matrix of a nested block design

.are equal and the design is variance balanced. We have the following
theorem: :

Theorem 4.1 : A nested binary sub-blocks balanced design d’,
whenever existent, is universally optimal over D(v; q;, . . ., Qp: 1)).

Proof : To prove this theorem we appeal to Theorem 3.1. Complete ‘
symmetry of Fg. is ensured by (if) of Definition 4.2 using the fact that
the row sums of Fy are zero. Further

2
: m’,,
traceFg = n—-Y, 3,3, —h—iu,f < n-b; = trace Fg*,
U _ '

using the fact that
v . v .
2
Y miyy 2 Y mayg = by
1=1 i=1

The proof is thus complete.

Remark 4.1 Using theorem 4.1 it is a established that the nested
balanced incomplete block designs of Preece [13] are universally
optimal over D(v;b,;n). : '

The construction of nested binary sub-blocks balanced designs

. does not pose any problems. There are many binary, balanced block

designs available in the literature (c.f. Kageyama, [8]; Khatri. [9}:

Gupta and Jones, [6]; Calvin, [3]). Using these designs it is easy to

construct nested binary sub-blocks balanced designs which are
universally optimal over D{v: q,, . . ., Q;,: 1).
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Example 4.1 : The following design is nested binary sub-blocks
" balanced and is universally optimal over D(6; 217, 3; 26):
{(1,2,3,4), (5,6)}, {(1,2,3,4), (1,5)}, {(1,6), (2.5)},
{(2.6), (3,5)}, {(3.6). (4.5), (4.6)).
Example 4.2 : The following is a nested binary sub-blocks balanced
design and is universally optimal over D(8; 213, 31/; 40):
{(1,3,5,7), (4.7)}, ((2,4.6,8), (3,8)}, {(4,5). (2.7}, {(1,2),
(3,4). (5.6)}, {(7,8), (1,6), (2,5)} {(1.4). (3,2), (5,8)),
{{7.6), (8,1), (6,3)}.

Example 4.3 : The following is a nested binary sub-blocks balanced
design and is umversally optimal over D(9; 215, 315: 64)

{(1,2 34) (5. 9)] {(1,2,3,4), (7,9}, {5.6,7, 8) (1.9},
{(5.6,7.8), (2,9)}, {3,8), 4.7)}, {(1,5), (3,9), (2.6)}. {(4.9).
(1.6), (2.5)), (6.9, (1.7), (4,8)}, [(8.9), 2.7), (3.5,
{(1,8), (3.6), (4.5)}, {(2.8), (3.7), (4,6)}.

5. Optimdlity with Correlated Observations

We have so far discussed the optimality of nested block designs
under the assumptxon that the observations are independent vmth

a common variance o2. However, because of nested sub-blocks it is
logical to assume that the observations within sub-blocks are
correlated, although observations from different sub-blocks within
a block as well as observations from different blocks may be
assumed to be uncorrelated. We therefore assume once again the
model in (2.1) with

D) = o> }.* A (5.1)

9
> (A-p) Iy, + p1V
=1

where D(e) is the covariance matnx of the residuals. It-is also
assumed that A, is non-singular and -1 < p < 1. Under this set-up
the co-efficient matrix of the reduced normal equations for obtaining
the generalized least squares estimates of linear functions of
- treatment effects is F§ = (1-p) Fy. where Fy, as given in (2.2), is the

and Ay
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co-efficient ‘matrix of the reduced normal equations for obtainmg
the least squares estimates of linear functions of treatmerit effects
under the usual additive, homoscedastic model. It therefore follows
that a design which is universally optimal over D(v; q;, . . . ,Gp: D)
under the usual homoscedastic model is also universally optimal
over D(v; q;, . . . ,qp; n) under the heteroscedastic setting (5.1).

'ACKNOWLEDGEMENT

The author gratefully acknowledges the referee for making many helpful
suggestions which led to a considerable improvement in an earlier version of the
article.

REFERENCES

(1} Agarwal. H.L. and Prasad, J., 1982. Some methods of construction of
balanced incomplete block designs with riested rows and columns. Biometrika
69, 481-483.

(2] Agarwal, H.L. and Prasad, J., 1983. On construction of balanced incomplete
- block designs with nested rows and columns. Sankhya B 45, 345-350.

3] Calvin,J.A., 1986. A new class of vanance balanced desxgns J. Statist. Plann.
Inf. 14, 251-254. - ‘

. 4] Cheng, C.S., 1986. A method of constructing balanced incomplete block
designs with nested rows and columns. Biomnetrika 73, 695-700.

[5] Dey. A., Das U.C..and Banerjee, A.K., 1986. Construction of nested balanced
incomplete block designs. Calcutta Statlst. Assoc. Bull. 35, 161-167.

[6] Gupta, S.C. and Jones, B., 1983. Equireplicate balanced block designs with’
unequal block sizes. Biometrika 70 433-440. -

{71 Homel, R.J. and Robinson, J., 1975. Nested partially balanced incomplete
block designs. Sankhya B 37, 201-210.

[8] Kageyama, S., 1974. Reduction of associate classes. for block designs and
‘ related combinatorial arrangements. Hiroshima Math. J. 4. 527-618.

9] Khatri, C. G 1982. A note on variance balanced designs. J. Statist. Plaan Inf.
6. 173-177.

{10l Kiefer. J.. 1975. Construction and optimality of generalized Youden designs.
In A Survey of Statistical Designs and Linear ‘Models, Ed. J.N. Srivastava,
333—353 Amsterdam: North Holland.

[11] Nelder,J.A., 1965a. The analysis of randomised experiments with orthogonal
block structure. I.-Block structure and the null analysis of variance. Proc
Royal Soc. A 283, 147-162. .



194

(12]

[13]

(14]

(15]

(16}

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS
)

Nelder, J.A.. 1965b. The ahalysis of randomised experiments with orthogonal
block structure. II. Treatment structure and the general analysis of variance.
Proc. Royal Soc. A 283, 147-162. v

Preece. D.A., 1967. Nested balanced incomplete block designs. Biometrika 54,
479-486.

Preece, D.A. and Cameron. P.J., 1975. Some new fully-balanced Graeco-Latin
Youden squares, Utilitas Math. 8, 193-204.

Singh. M. and Dey. A., 1979. Block designs with nested rows and columns.
Biometrika 66, 321-326.

Sreenath, P.R.. 1989. Construction of some balanced incomplete block
designs with nested rows and columns. Biometrika 76, 399-402.



