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Summary
This article studies nested block designs,with unequal block sizes.

The numbers of subblodks and the subblock sizes within each block are
unequal. The recovery of treatment information from the subblocks
within the blocks, or from the blocks themselves is not considered in
this article. The optimality ofnested block designswith unequal block
sizes is also studied. It is seen that a nested, binary subblocks balanced
design is universally optimal over a classofdesigns withfixed numbers
of treatments, blocks and subblocks within a block.
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Introduction

The use ofincomplete block designs is widely recognized in many
fields ofexperimentation. With some types ofexperimental material,
however, there may be more sources of variation than can be
eliminated by ordinary block designs. For such situations, Preece
[13] introduced nested balanced incomplete block designs, where
sub-blocks are nested within each block of a balanced incomplete
block design, the sub-blocks constituting another balanced
incomplete block design. Homel and Robinson [7] extended the
results of Preece to nested partially balanced Incomplete block
designs. Singh and Dey [15] defined and discussed balanced
incomplete block designs with nested rows and coliimns for
eliminating heterogeneity in two directionswithineachblock. Preece
and Cameron [14], Singh and Dey [15], Agrawal and Prasad [1][21,
Cheng [4], Dey. et al [5] and Sreenath [16] gave some methods of
construction ofbalanced Incomplete block designs with nested rows
and columns.

The results obtained by earlier workers are restricted to a
situation when the block design is proper and the common value of
the blocksizes is a composite number. In animal experiments where
litters form natural blocks, the assumption of a common block size
is unrealistic. Moreover, the common value of the block size may be
a primenumber.The purpose ofthis article is to study nested block
designs with unequal block sizes. The present study is, however,
restricted to a situation when there is only one more additional
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source of variability within blocks. In other words, we are
considering a settingwhere within the blocks ofa block design is
nested anotherincomplete blockdesign. Theuniversal optimality of
block designs with nested blocks is also investigated. Some
universally optimal designs are reported. Fornested blockdesigns
with different block sizes and different sub-block sizes, however,
there is no valid randomisation procedure and Nelder's [11][12]
randomisation theory does not apply.

2. Ancdysis ofthe Designs

Suppose that v treatments are arranged in a nested block design
involving b blocks, there heing qj mutually exclusive andexhaustive
sub-blocks within the block, j=l b. so that bj =Z q^ is the
overall total number of sub-blocks. Let N=(n,) be the vxb
treatments-blocks incidencematrix, where n,. denotes the number
ofreplications ofthe i^ treatment in the block. i=l, . . ., v. The
rowsums ofN are denoted by r = (rj rj' and the column sum
byk =(kj kj', where rjand k denote respectively the replication
number, ofthe i treatment andthe size of the block. Also r^+ .
• • + = kj + . . . + k^,=n, the total number of experimental units.
Let M=(m,j, denote the vxb^ treatments sub-blocks matrix, where
m,j,gj denotes the replication number of the i^ treatment in the

sub-block nested within the block, j' = 1, . . ., q The row
sums of M are the elements of r whUe its column sums are the
elements of the b^xl vector h =

(hiQ) hq^yj), I'hyj =kj and is atxl vector of ones. Here
hj,yj denotes the size ofthe sub-block nestedin the block. Let
R, Hj and H denote respectively the diagonal matrices whose
diagonal elements are the successive elements of r, h and h. Let W
be the bxb^ blocks-sub-blocks incidence matrix.

For analysis, consider the model

yij'0)u = M- + T, -I- Pj + Tij'o) + eij'(,)u (2.1)

where yij'(j)u is theu"'observation obtained from the i"" treatmentin
the j'"' sub-block of the j"' block, u =1 my-gj, is the general
mean, t, is the l'̂ treatment effect, Pj is the j"" block effect. is the
effect of the sub-block nested within the j"' block, and the
quantities Cygju are uncorrelated errors with mean zero and common
variance 0^. In this article we do not consider recovery of treatment
information from the sub-blocks within the blocks, or from the



OPTIMAL NESTED BLOCK DESIGNS 189

blocks themselves. The observations are assumed to be arranged in
the order of (j, j'). Then w = where denotes the direct sum.

Defming a bixb matrix L = the following relations are true:

N = ML, K = L' HL, W= L'H, n = I'b, Hlb, , k = L' Hit,

Using least squares, the co-efficient matrix of the reduced normal
equations for obtaining best linear unbiased estimates of treatment
contrasts is

F = R -Mir' M' (2.2)

The matrix F is the same as the usual C matrix that is obtained
if blocks are ignored and the design is analysed treating sub-blocks
as blocks. Therefore, in so far as estimation of treatment effects is
considered, it is only the sub-blocks structure that matters.

The vxv matrix F is symmetric, non-negative definite with zero
row sums. For a connected nested block design the rank ofF is v-1.
A connected nested block design is variance balanced if and only if

Iv -
11'

(2.3)

where 6, a scalar constant, is the unique positive eigenvalue of F
with multiplicity v-1 and I^. is an identity matrix of order v.

Example 2.1 : The following is a nested variance balanced design
with parameters v = 6, b =9, bj = 18, k = (6I3, Sl'g)', h = (31:^, 2,
3, 2, 3, 2, 3, 2, 3, 2, 3, 2)'.

((1,2,3), (2,4,6)1,

{(1,2,3), (1,6)1,

{(1,2,3), {2,5)1,

3. Optimaltty Tool

Suppose D is a class of competing designs under the specified
design parameters. Let O, a functional of for d £ D, denote an

optimality criterion. Adesign d* e D is said to be O-optimal over D
if 0(Fj») <O (Fj) for all d e D. Kiefer [10] proposed a strong
optimality criterion, termed universal optimality, which includes
many optimality criteria including D-, E- and A- optimality and
many others., Wefer's definition of universal optimality and the

{(1,4,5), (3,5,6)1,

((1,4,5), (2,5)),

{(2,4,6), (1,6)1,

((1,4,5), (3,5,6)1,

{(2,4,6), (3,4)1,

{(3,5,6), (3,4)1.
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sufficient condition for achieving universal optimality are stated
below.

Definition 3.1 : Let be the class of all the vxv symmelxic
nonnegative-definite matrices with zero row sums. Suppose a
function ® from % to (-00, +00] is such that

(a) ® is matrix convex.

(b) For any F e <1) (aF) is nonincreasing in the scalar a > 0.

(c) <I> is invariant under each simultaneous permutation of rows
arid columns of F in %

Adesign d* e D is said to be universally optimal over D if d* is
O-optimal over D for all O satisfying (a), (b) and (c).

Theorem 3.1 (Kiefer, 1975) ; Suppose a class f = {Fj : d e D} of
matrices In % „ contains an F^* for which

(i) Fj* is completely symmetric, Le., F^* Is of the form
al^+bl^i;. where a and b are scalars.

(ii) trace (F^*) = max trace (FJ.
d6D

Then d* is universally optimalover D. Definition 3.1 and Theorem
3.1 hold.for all experimental settings where vxv information matrices
are symmetric, nonnegative-definite with zero row sums and rank
V-1. For example, this result is applicable to ciU block designs, nested.
block designs, designs for two-way eUmination of heterogeneity,
multi-way heterogeneity designs, etc.

4. The Main Result

We now prove the universal optimality of nested block designs
under the model (2.1). Before giving the main result we have the
following definition:

Dejinition 4. J ; A block design with nested blocks is biriary if
my-g) = 0 or 1 for all i, j' and j. It Is not, however, required that n,j
should also take only the two values 0 or 1.

Let D(v; q^ n) denote the class of all connected nested
block designs with b blocks of sub-blocks qj qj^, v treatments
and total number of observations n. The replication numbers of
treatments, the block sizes and the sub-block sizes are fixed for
designs belonging to this class. Throughout, the sufQxd will denote
a design in D.
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Dejinition 4.2 : Adesign deD (v; qi, . . .. qb : n) is called a nested
binary sub-blocks balanced design if

(i) < 1 for all i=l, . . V, j'=l, . . qj,

j=l....b.

X S "^dij'O) nidi'ji'J'O)

m 1=1 ,r-i
hdi'i

= ha constant for all i^ i'.
dJ'O)

Condition (i) above implies that the frequency of treatments
appearing in any subblock should differ by at most one. This
condition enables us to prove the universal optimality of the nested
binary subblocks balanced designs. Condition (ii) ensures that all
the oflf-diagonal elements of the F-matrix of a nested block design

.are equal and the designis variance balanced.We have the following
theorem:

Theorem 4.1 •. A nested binary sub-blocks balanced design d*.
whenever existent, is universally optimal over D(v; q^, . . ., qj^; n).

Proof: To prove this theorem we appeal to Theorem 3.1. Complete
sjTnmetry ofFj. is ensured by (W ofDefinition 4.2 using the fact that
the row sums of are zero. Further

traceFj = n-^ E S
1 J J'

using the fact that

^dj'O)
< n-bi = trace F^

indlJ'O) ^ X "^diJ'O) - hdjra)

1=1 1=1

The proof is thus complete.

Remark 4.1 Using theorem 4.1 it is a established that the nested
balanced incomplete block deisigns of Preece [IS] are universally
optimal over D{v;bi:n).

The construction of nested binary sub-blocks balanced designs
does not pose any problems. There are many binary, balanced block
designs available in the literature (c.f. Kageyama, [8]; PQiiatri, [9]:
Gupta and Jones, [61; Calvin, [3]). Using these designs it is easy to
construct nested binary sub-blocks balanced designs which are
universally optimal,over D(v: q, q^; n).
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Example 4.1 : The following design is nested binary sub-blocks
balanced and is universally optimal over D(6; 214, 3; 26);

{(1,2,3,4), (5.6)), ((1,2,3,4), (1,5)), {(1,6), (2,5)},

{(2,6), (3,5)}, {(3,6), (4.5). (4.6)).

Example 4.2 : The followingis a nested binary sub-blocks balanced
design and is universally optimal over D(8; 213, 3I4; 40);

{(1,3,5,7), (4.7)), {(2.4,6,8), (3,8)), {(4,5), (2,7)), {(1,2),

(3,4), (5.6)), {(7,8), (1,6), (2,5)} {(1,4), (3,2), (5.8)),

{(7,6). (8.1), (6,3)}.

Example 4.3 : The following is a nested binary sub-blocks balanced
design and is universally optimal over D(9; 2I5, 31'6; 64);

{(1,2,3,4), (5.9)), {(1,2,3,4), (7,9)}, {5,6.-7,8), (1,9)},

{(5,6,7,8), (2.9)}, {(3,8), (4,7)}, {(1,5), (3,9), (2,6)}, {(4,9),

(1,6), (2,5)}, {(6,9), (1,7), (4.8)}. {(8,9), (2.7), (3,5)},*
{(1,8), (3,6), (4.5)}, {(2,8), (3,7), (4,6)}.

5. Optimality with Correlated Observations

We have so far discussed the optimality of nested block designs
under the assumption that the observations are independent with
a commonvariance o^. However, because ofnested sub-blocks it is
logical to assume that the observations within sub-blocks are
correlated, although observations from different sub-blocks within
a block as well as observations from different blocks may be
assumed to be uncoirelated. We therefore assume once again the
model in (2.1) with

and

D(e) = Aj
J=i

A, = s* (i-p) V. + pir
J=1

(5.1)

where D(e) is the covaxiance matrix of the residuals. It is also
assumed that Aj is non-singular and -1 < p < 1. Under this set-up
theco-efficient matrix ofthereduced normail equations for obtaining
the generalized least squares estimates of linear functions of
treatment effects is = (1-p) Fj. where F^. as given in (2.2). is the
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co-efflcient matrix of the reduced normal equations for obtaining
the least squares estimates of linear functions of treatmerit effects
under the usual additive, homoscedastic model; It therefore follows
that a design which is universally optimal over D(v; qj qt; n)
under the usu^ homoscedastic model is also universally optimal
over D(v; qj qt: n) under the heteroscedastic setting (5.1)
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